Kernel Logistic PLS: a new tool for complex classification
نویسندگان
چکیده
“Kernel Logistic PLS” (KL-PLS), a new tool for classification with performances similar to the most powerful statistical methods is described in this paper. KL-PLS is based on the principles of PLS generalized regression and learning via kernel. The successions of simple regressions, simple logistic regression and multiple logistic regressions on a small number of uncorrelated variables that are computed within KL-PLS algorithm are convenient for the management of very high dimensional data. The algorithm was applied to a variety of benchmark data sets for classification and in all cases, KL-PLS demonstrates its competitiveness with other state-of-art classification method. Furthermore, leaning on statistical tests related to the logistic regression, KL-PLS allows the systematic detection of data points close to “support vectors” of SVM and thus reduces the computational charges of the SVM training algorithm without significant loss of accuracy.
منابع مشابه
Kernel logistic PLS: A tool for supervised nonlinear dimensionality reduction and binary classification
Kernel logistic PLS” (KL-PLS) is a new tool for supervised nonlinear dimensionality reduction and binary classification. The principles of KL-PLS are based on both PLS latent variables construction and learning with kernels. The KL-PLS algorithm can be seen as a supervised dimensionality reduction (complexity control step) followed by a classification based on logistic regression. The algorithm...
متن کاملGene Expression Data Classification with Revised Kernel Partial Least Squares Algorithm
One important feature of the gene expression data is that the number of genes M far exceeds the number of samples N. Standard statistical methods do not work well when N < M . Development of new methodologies or modification of existing methodologies is needed for the analysis of the microarray data. In this paper, we propose a novel analysis procedure for classifying the gene expression data. ...
متن کاملKernel PLS-SVC for Linear and Nonlinear Classification
A new method for classification is proposed. This is based on kernel orthonormalized partial least squares (PLS) dimensionality reduction of the original data space followed by a support vector classifier. Unlike principal component analysis (PCA), which has previously served as a dimension reduction step for discrimination problems, orthonormalized PLS is closely related to Fisher’s approach t...
متن کاملSparse Kernel Orthonormalized PLS for feature extraction in large data sets
We propose a kernel extension of Orthonormalized PLS for feature extraction, within the framework of Kernel Multivariate Analysis (KMVA) KMVA methods have dense solutions and, therefore, scale badly for large datasets By imposing sparsity, we propose a modified KOPLS algorithm with reduced complexity (rKOPLS) The resulting scheme is a powerful feature extractor for regression and classification...
متن کاملRandom Forests Feature Selection with K-PLS: Detecting Ischemia from Magnetocardiograms
Random Forests were introduced by Breiman for feature (variable) selection and improved predictions for decision tree models. The resulting model is often superior to AdaBoost and bagging approaches. In this paper the random forests approach is extended for variable selection with other learning models, in this case Partial Least Squares (PLS) and Kernel Partial Least Squares (K-PLS) to estimat...
متن کامل